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An expectation-maximization algorithm for maximum-like-

lihood refinement of electron-microscopy images is presented

that is based on fitting mixtures of multivariate t-distributions.

The novel algorithm has intrinsic characteristics for providing

robustness against atypical observations in the data, which is

illustrated using an experimental test set with artificially

generated outliers. Tests on experimental data revealed only

minor differences in two-dimensional classifications, while

three-dimensional classification with the new algorithm gave

stronger elongation factor G density in the corresponding

class of a structurally heterogeneous ribosome data set than

the conventional algorithm for Gaussian mixtures.
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1. Introduction

Whereas maximum-likelihood approaches have become a gold

standard in many areas of macromolecular X-ray crystallo-

graphy (e.g. Bricogne, 1997; de La Fortelle & Bricogne, 1997;

Read, 2001; Blanc et al., 2004), in single-particle three-

dimensional electron microscopy (3D-EM) such statistical

approaches have only recently been started to be explored. An

important characteristic of the maximum-likelihood approach

is the natural way in which one may model the experimental

noise in the data. Because the noise levels in 3D-EM data are

typically extremely high, one would expect that 3D-EM

refinement problems could greatly benefit from a proper error

model. However, for many years image processing in 3D-EM

has been addressed using methods that do not take the noisy

character of the experimental data into account in a statistical

way (Frank, 2006). Provencher and Vogel performed early

work on a statistical model for the noise in 3D-EM data

(Provencher & Vogel, 1988; Vogel & Provencher, 1988) and it

was only in 1998 that Sigworth introduced a maximum-like-

lihood algorithm for the alignment of a set of two-dimensional

images (Sigworth, 1998). Thereafter, Doerschuk and co-

workers used the same principles for the three-dimensional

reconstruction of icosahedral viruses (Doerschuk & Johnson,

2000; Yin et al., 2003; Lee et al., 2007), Pascual-Montano and

coworkers introduced a maximum-likelihood algorithm for

self-organizing maps (Pascual-Montano et al., 2001) and Zeng

and coworkers applied this approach to two-dimensional

alignment of crystal images (Zeng et al., 2007).

We were the first to address the problem of simultaneous

two-dimensional image alignment and classification using

maximum-likelihood principles (Scheres, Valle, Nuñez et al.,

2005) and we then extended this methodology to the general



case of three-dimensional reconstruction from structurally

heterogeneous data (Scheres, Gao et al., 2007). The latter is of

special relevance for 3D-EM single-particle analysis, in which

many samples constitute large and flexible macromolecular

complexes. These complexes typically adopt multiple confor-

mations that are often directly related to their function in

living organisms. In principle, provided that one can sort the

projections from distinct structures using a computer, multiple

three-dimensional reconstructions of the particles in their

distinct functional states may be obtained from a single

3D-EM experiment. However, this sorting is strongly inter-

twined with the orientational assignment of the projections

and at present still represents one of the major challenges in

single-particle image processing (Leschziner & Nogales, 2007).

We model structurally heterogeneous data as a finite

mixture and treat the unavailable information about the

orientation and the structural class of each experimental

projection as missing data. We then tackle the mixture

problem using expectation maximization, which can be shown

to converge to the maximum-likelihood estimation of the

mixture parameters under relatively mild conditions (Demp-

ster et al., 1977; McLachlan & Peel, 2000). The resulting

algorithm is a multi-reference refinement procedure which is

similar to conventional refinement approaches in the field

(Radermacher, 1994; Penczek et al., 1994). However, the most

important difference of the maximum-likelihood approach is

that the underlying statistical data model allows one to

marginalize over the missing variables. That is, whereas

conventional approaches assign a single orientation and class

membership to each projection, the maximum-likelihood

approach calculates probability-weighted assignments for all

possibilities. This provides an intrinsic stabilization of the

possibly unstable reconstruction problem. Together with the

typical use of relatively small images (also to reduce compu-

tational costs) and an early stopping criterion in the under-

lying algrebraic reconstruction algorithm with smooth basis

functions, or blobs (Marabini et al., 1998; Scheres, Gao et al.,

2007), this yields a stable algorithm in practice which has been

shown to be highly effective on multiple occasions (see, for

example, Nickell et al., 2007; Cuellar et al., 2008; Julián et al.,

2008; Rehmann et al., 2008).

Despite the importance of the underlying data model in

statistical approaches, little work has been performed to

explore alternative models for maximum-likelihood approa-

ches in 3D-EM. All the approaches mentioned above share

the assumption of additive white Gaussian noise in real space.

A large part of the noise may result from shot noise owing to

the small number of imaging electrons (10–20 per squared

angstrom). The latter would require a multiplicative noise

model with a Poisson distribution. However, in practice the

additive Gaussian model is a good approximation when each

pixel represents many squared angstroms (Sigworth, 2004).

The pixel areas for the classifications described in this paper,

for example, range from 12 to 30 squared angstroms. More-

over, several additional sources of noise exist such as struc-

tural noise arising from the surrounding ice and detector

noise; the combination of these multiple independent sources

of noise has been shown to follow a Gaussian distribution

(Sorzano, de la Fraga et al., 2004). The additive character of

the Gaussian noise model results in a computationally

attractive algorithm, but the assumption of whiteness is known

to be a poor one for electron-microscopy projections. There-

fore, we recently introduced an alternative data model in

reciprocal space that allows the modelling of nonwhite, or

coloured, Gaussian noise (Scheres, Nunez-Ramirez et al.,

2007). The Gaussian distribution still remains a common

factor, while in other pattern-recognition fields a notable

interest has developed in the use of alternative distributions.

For many applied problems the tails of the Gaussian are

shorter than required and mixtures of Gaussians may lack

robustness in the presence of atypical observations. In parti-

cular, the use of multivariate t-distributions has repeatedly

been proposed as a more robust alternative. The t-distribution

has wider tails and its degree of freedom � essentially plays the

role of rejecting atypical observations. As � tends to infinity,

the t-distribution approaches the Gaussian, so that � may be

viewed as a robustness tuning parameter. Several contribu-

tions defining frameworks of expectation-maximization algo-

rithms for mixtures of t-distributions have appeared and

mixtures of t-distributions have been successfully applied to a

range of different types of data (Lange et al., 1989; McLachlan

& Peel, 2000; Wang et al., 2004).

In this contribution, we explore the suitability of modelling

structurally heterogeneous 3D-EM data as a mixture of

multivariate t-distributions. We derive the corresponding

expectation-maximization algorithm in x2. In x3 we illustrate

its intrinsic properties of providing robustness against outliers

and compare the performance of the new algorithm with

the conventional algorithm for Gaussian mixtures in two-

dimensional and three-dimensional classification. We

conclude this paper with a discussion on the potential

usefulness of the proposed algorithm in x4.

2. Methods

2.1. The optimization problem

We model two-dimensional images X1, X2, . . . , XN as

follows:

Xi ¼ R�i
V�i
þGi; ð1Þ

where

(i) Xi 2 R
J are the recorded data. Typical data sets comprise

N = 20 000 to N = 200 000 images with J = 50 � 50 up to

J = 100 � 100 pixels.

(ii) Gi 2 R
J is independent zero-mean (additive) noise.

(iii) �i is a random integer with possible values 1, 2, . . . , K.

There are then K unknown three-dimensional structures, V1,

V2, . . . , V�. Note that K is fixed, i.e. user-determined.

(iv) R�i
VKi
2 R

J are the two-dimensional projection data

(uncontaminated by noise) of the unknown object V�i
in an

unknown random orientation in space and position in the

plane. We parametrize the unknown orientation and position

in the plane by a discretized distribution of p = 1, . . . , P
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projection directions (described by P combinations of two

Euler angles) and q = 1, . . . , Q in-plane transformations

consisting of Qrot rotations and Qtrans translations and the

corresponding discrete transformations are denoted as Rpq.

The reconstruction problem at hand is to estimate V1, V2,

. . . , VK from the observed data X1, X2, . . . , XN. We view this

estimation problem as a missing data problem, where the

missing data associated with the observed data elements Xi are

the position �i and the random index �i. Thus, the complete

data set is

ðXi;�i; �iÞ i ¼ 1; 2; . . . ;N: ð2Þ

We solve the reconstruction problem by way of maximum-

likelihood estimation, where we aim to find those parameters

�* that maximize the logarithm of the joint probability of

observing the entire set of images X1, X2, . . . , XN:

�� ¼ arg max
�

PN
i¼1

log
PK
k¼1

PP
p¼1

PQ
q¼1

PðXijk; p; q;�ÞPðk; p; qj�Þ:

ð3Þ

As described previously (see, for example, the Supplementary

Note in Scheres, Gao et al., 2007), we assume that particle

picking has left a two-dimensional Gaussian distribution of

residual translations qx and qy centred at the origin and with

standard deviation �. Furthermore, we assume an even

distribution of the Qrot sampled in-plane rotations and a

discretized distribution of estimated proportions �kp of the

data belonging to the pth projection of the kth under-

lying three-dimensional structure (with �kp � 0 andPK
k¼1

PP
p¼1 �kp = 1). Thereby, P(k, p, q|�) is calculated as

follows:

Pðk; p; qj�Þ ¼
�kp

Qrot2��
2

exp
q2

x þ q2
y

�2�2

� �
: ð4Þ

In contrast to previous contributions where a Gaussian

distribution was employed, we calculate P(Xi|k, p, q, �) as a

multivariate t-distribution, with a diagonal covariance matrix

with all diagonal elements equal to �2:

PðXijk; p; q;�Þ ¼ tJðXi; k; p; q;�Þ

¼
� �þJ

2

� �
� �

2

� �
ð���2Þ

J
2ð1þ �ikpq=�Þ

ð�þJÞ
2

; ð5Þ

with

�ikpq ¼
1

�2
kXi � RpqVkk

2
ð6Þ

and ||�|| denoting Euclidian distance.

Following McLachlan & Peel (2000), we notice that the

multivariate t-distribution may be viewed as a weighted

average Gaussian distribution with the weight given by the

Gamma distribution:

tJðXi; k; p; q;�Þ ¼
R

nJðXi; k; p; q; ui;�ÞqðuiÞ dui: ð7Þ

Here, q(ui) is the p.d.f. of a Gamma distribution with equal

scale and degrees of freedom, G (�/2, �/2), and nJ(Xi; k, p, q, ui,

�) is a multivariate Gaussian distribution centred at RpqVk,

and again with a diagonal covariance matrix, which has all

diagonal elements equal to �2/ui,

nJðXi; k; p; q; ui;�Þ ¼
2��2

ui

� ��J=2

exp �
ui

2
�ikpq

� �
: ð8Þ

Therefore, it is convenient to introduce another set of

‘missing’ variables u1, . . . , uN, which are defined such that

PðXijk; p; q; ui;�Þ ¼ nJðXi; k; p; q; ui;�Þ ð9Þ

independently for i = 1, . . . , N and all ui are independently

distributed according to

Pðuijk; ’;�Þ ¼ G
�

2
;
�

2

� �
: ð10Þ

Thus, the complete data set becomes

ðXi;�i; �i; uiÞ; i ¼ 1; 2; . . . ;N ð11Þ

and the function to be optimized becomes

PN
i¼1

log
XK

k¼1

XP

p¼1

XQ

q¼1

PðXijk; p; q; ui;�Þ

� Pðuijk; p; q;�ÞPðk; p; qj�Þ: ð12Þ

In analogy with (3) and with the previously introduced algo-

rithm for Gaussian distributions (Scheres, Gao et al., 2007), the

reconstruction problem at hand is to find the parameter set �*

that maximizes (12). However, � now includes an additional

parameter � and the missing data vector has been augmented

to not only include positions �i and random indices �i but also

variables ui. In this way, atypical observations in the data (i.e.

observations with relatively large residuals) may be accomo-

dated by relatively wide Gaussian distributions (i.e. with small

values of ui) and the additional parameter � is used to describe

the assumed distribution of all ui according to (10).

2.2. The optimization algorithm

This optimization problem may be solved by expectation

maximization (Dempster et al., 1977). This algorithm is used

for finding maximum-likelihood estimates of parameters in

probabilistic models that depend on unobserved or hidden

variables. Expectation maximization is an iterative method

that alternates between expectation (E) and maximization

(M) steps. In the E-step one computes the expectation of the

likelihood by including the hidden variables as if they were

observed. In the M-step that follows, the maximum-likelihood

estimate of the model parameters is computed by maximizing

the expected likelihood found in the previous E-step. The

parameters found in the M-step are then used to begin

another E-step and the process is repeated. As stated above,

the missing variables in this case are ui, �i and �i and the

parameters to be estimated are contained in �.

In the E-step, again following McLachlan & Peel (2000), we

calculate the expectation value of the log-likelihood function

using the current estimates of the model parameters (�old):
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Qð�; �oldÞ ¼
PN
i¼1

PK
k¼1

PP
p¼1

PQ
q¼1

	old
ikpq � ½log PðXijk; p; q; ui;�Þ

þ log Pðuijk; p; q;�Þ þ log Pðk; p; qj�Þ�: ð13Þ

Here, 	old
ikpq is the conditional probability distribution of k, p

and q given Xi,

	old
ikpq ¼

Pðk; p; qj�oldÞPðXijk; p; q;�oldÞPK
k¼1

PP
p¼1

PQ
q¼1

Pðk; p; qj�oldÞPðXijk; p; q;�oldÞ

; ð14Þ

and for the conditional expectation of ui, given Xi, k, p and q,

we obtain

uold
ikpq ¼

�old þ J

�old þ �old
ikpq

: ð15Þ

In the subsequent M-step of the algorithm, we maximize the

lower bound (13) with respect to all model parameters in �.

Since there exists no closed form for the update of �new, we will

consider � to be known (i.e. user-determined). The updates for

� and the proportions �pk
new may be calculated independently

from the updates of the other model parameters as follows:

�new
pk ¼

1

N

PN
i¼1

PQ
q¼1

	old
ikpq; ð16Þ

�new
¼

1

2N

PN
i¼1

PK
k¼1

PP
p¼1

PQ
q¼1

	old
ikpqðq

2
x þ q2

yÞ

" #1=2

: ð17Þ

For the updates of V and �, we note that they are a weighted

version of the corresponding updates in the case of Gaussian

distributions, with standard deviations �2
i =ui, . . . , �2

N=uN

and with the weights being the additional missing variables

u1, . . . , uN. Therefore, as for the Gaussian case, updating V

may be performed by separately solving K least-squares

problems, for which we use a modified algebraic reconstruc-

tion algorithm (wlsART; see Scheres, Gao et al., 2007). In this

case, the least-squares problems are

min
PN
i¼1

PP
p¼1

PQ
q¼1

	old
ikpquold

ikpqkXi � RpqVnew
k k

2
ð18Þ

and the updated � is obtained as

�new
¼

1

NJ

PN
i¼1

PK
k¼1

PP
p¼1

PQ
q¼1

	old
ikpquold

ikpqkXi � RpqVnew
k k

2

 !1=2

: ð19Þ

2.3. Implementation

We implemented a total of four variants of the above-

described algorithm in the open-source package XMIPP

(Sorzano, Marabini et al., 2004; Scheres et al., 2008). The

proposed algorithm for three-dimensional classification can be

adapted with only minor changes to a two-dimensional clas-

sification algorithm. In this case, instead of optimizing (13)

with respect to three-dimensional structures V1, . . . , VK, one

optimizes this function with respect to two-dimensional

images A1, . . . , AK. The algorithm remains basically the same,

except for the fact that in this case Rpq represents an in-plane

transformation (parametrized by a single rotation and two in-

plane coordinates) and the least-squares problem in (18) is

replaced by the following updated formula:

Anew
k ¼

PN
i¼1

PP
p¼1

PQ
q¼1

	old
ikpquold

ikpq;R�1
pq Xi

PN
i¼1

PP
p¼1

PQ
q¼1

	old
ikpq uold

ikpq

: ð20Þ

In addition, both the two-dimensional and the three-dimen-

sional variants may also be expressed in reciprocal space. In

this case, X1, . . . , XN, A1, . . . , AK and V1, . . . , VK represent

the Fourier transforms of the observed data and the two-

dimensional or three-dimensional models, respectively, Gi is

independent zero-mean additive noise in reciprocal space and

Rpq represents the reciprocal-space equivalent of either a

projection operation or an in-plane transformation in real

space. In the former model one describes the noise by inde-

pendent distributions on the real-space pixels, while in the

latter the noise is modelled as being spatially stationary, which

allows one to describe nonwhite or coloured noise. For a more

extensive elaboration on these characteristics and their

implementation, the reader is referred to Scheres, Nunez-

Ramirez et al. (2007).

Finally, we mention that the summations over k, p and q are

extremely computing-intensive operations. Therefore, we have

implemented three deviations from the strict expectation-

maximization algorithm that result in a considerable speed-up

of the calculations without hampering the classification

performance in practice. The first two deviations were also

implemented as such in the algorithms using Gaussian distri-

butions, whereas the third deviation is specific for the

t-distribution case: (i) instead of integrating over the entire

search space of k and q, we employ a reduced-space approach

(Scheres, Valle & Carazo et al., 2005), (ii) the update of � is

performed using Vold instead of Vnew and (iii) following the

proposal of McLachlan & Peel (2000), we replace the division

by N in (19) by
PN

i¼1

PK
k¼1

PP
p¼1

PQ
q¼1	

old
ikpquold

ikpq.

3. Results

3.1. Robustness to outliers

We used a simplified two-dimensional test case to illustrate

the potential of the t-distribution in providing robustness to

outliers. The test data consisted of 1000 experimental cryo-EM

projections of a 70S Escherichia coli ribosome particle in a

single orientation. In 50 of the 1000 images, we positioned

circles of constant density with radii varying uniformly

between 10 and 15 pixels and with centres varying between

�15 and 15 pixels from the image origin. The intensity of these

circles was set to a constant value of 5, 10, 15 or 20 times the

standard deviation of the original experimental images.

We then performed two-dimensional real-space maximum-

likelihood refinements with a single reference image for these

data sets, comparing the performance of the Gaussian and
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t-mixtures (Fig. 1). The resulting averages clearly showed the

effect of the improved robustness to outliers provided by the

t-mixture. For the data sets with the strongest outliers in

particular, the averages obtained with the Gaussian mixture

showed clear artefacts that were not visible in the averages

obtained using the t-mixture model. Analysis of the converged

estimates for the standard deviation in the noise indicated that

the algorithm for the Gaussian case tries to accommodate the

outliers by increasing the widths of the Gaussians. This is much

less the case for the t-distribution case, where low values for

uold
ik’ downweight the contribution of the outliers in the

calculation of the averages and the standard deviation of the

noise. The stronger the outliers, the larger this downweighting

effect and the larger the differences between the two algo-

rithms.

3.2. Performance in two-dimensional classification

To explore the potential of the new algorithm in two-

dimensional image classification, we performed maximum-

likelihood multi-reference refinements on a cryo-EM data set

of MCM top views (Gómez-Llorente et al., 2005) and on a

negative-stain data set of G40P top views (Nunez-Ramirez et

al., 2006). For each data set we performed four runs, using

mixtures of Gaussians or of t-distributions with six degrees of

freedom, and performing two-dimensional refinements in real

or in reciprocal space. All four runs were started from iden-

tical seeds, which were obtained as average images over three

random subsets of the data sets. Fig. 2 shows the resulting

images of these runs, which show only minor differences

between the two types of mixtures either in real or in reci-

procal space. In all cases, the refined images look very similar

to those obtained with a Gaussian mixture. Not only do the

densities for the averaged particles in the centre of the images

look very similar, the two mixture types even result in

common characteristics in the noise background. The opti-

mization path and the optimal orientation and classification

parameters of the individual images upon convergence also

showed only small differences (not shown).

3.3. Performance in three-dimensional classification

For three-dimensional classification, we compared the

performance of both types of mixtures using a data set of

20 000 ribosome particles. This data set was previously shown

to be structurally heterogeneous as only part of the ribosomes

are complexed with elongation factor G (EF-G; see Scheres,

Nunez-Ramirez et al., 2007). Refinements with four references

typically converge to a single class corresponding to ribosomes

in complex with EF-G and three classes of ribosomes without

EF-G. We again performed four runs using real-space or

reciprocal-space refinement and using a Gaussian or a

t-distribution mixture with six degrees of freedom. The

intensity of segmented EF-G density in the class corre-

sponding to ribosomes in complex with EF-G may serve as an

indicator of classification quality, since remaining hetero-

geneity will generally yield lower density levels for EF-G. Fig. 3

shows segmented EF-G densities for the four runs performed.

Starting from identical seeds, the t-mixture model in real space

gave somewhat higher EF-G densities than the Gaussian

mixture and the corresponding classes overlapped by 87%.

Refinement in reciprocal space yielded stronger EF-G densi-

ties than in real space for both types of mixtures. The differ-

ences between the Gaussian and the t-mixture were smaller in

this case, as no obvious difference in the intensity of EF-G
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Figure 2
Class averages as obtained in two-dimensional classifications with three
references for the G40P and MCM data sets using a Gaussian or t-mixture
model in real or in reciprocal space.

Figure 1
(a) Converged reference images for the runs with a mixture of Gaussians
(top row) and t-distributions with six degrees of freedom (bottom row)
for test sets containing outliers of increasing intensity. A value of zero for
the outlier intensity is used to indicate the original test set without
outliers. (b) Converged estimates for the standard deviation in the noise
(�) for the runs with a Gaussian (black) or a t-mixture (grey). (b) Average
and standard-deviation values for the converged estimates for uold

ik’ at
maximal 	old

ik’ of the 50 outliers (black) and the remaining 950 images
(grey) upon convergence for the runs with a t-mixture.



density was observed and the EF-G-containing classes over-

lapped by 94%.

4. Discussion

The selection of individual particles from electron micro-

graphs, called particle picking, is typically a difficult task. For

cryo-EM data on relatively small particles (200–500 kDa) in

particular, automated procedures may have relatively high

error rates and the collection of good data is often strongly

dependent on the specialized skills of the electron micro-

scopist (Zhu et al., 2004). Therefore, it is relatively common

for cryo-EM data sets to contain significant amounts of

outliers. Atypical observations that were mistakenly assumed

to be a particle of interest may deteriorate the quality of the

three-dimensional reconstruction. In the best case scenario

they only affect the resolution obtained. In the worst case

scenario artefacts introduced by outliers may affect the

interpretation of the structure itself. Conventionally, outliers

have been dealt with by removing those particles with the

lowest cross-correlation coefficients with the reference from

the refinement process (Frank, 2006). Although effective in

practice, such discrete decisions are hard to accommodate in

the statistical framework of maximum-likelihood refinement.

The algorithm proposed in this contribution provides an

alternative statistical solution to outlier removal. The problem

of structurally heterogeneous projection data is modelled as a

finite mixture of multivariate t-distributions with a given

degree of freedom. In the resulting expectation-maximization

algorithm, images with atypically large residuals contribute

relatively little to the model estimates through lower values of

uold
ik’ ; see (15), (18) and (19). Note that the residuals used to

calculate the weights uold
ik’ are closely related to the cross-

correlation coefficient, but instead of taking discrete decisions

the statistical approach applies a continuous downweighting of

outliers as their residuals increase. We illustrated this effect for

a small experimental test set with artificially generated out-

liers. In the Gaussian model all particles contribute equally to

the model estimates. Consequently, especially in the presence

of strong outliers, the average images obtained showed outlier-

related artefacts and the variance of the noise was over-

estimated. In contrast, the t-distribution model resulted in

clean average images and reliable noise estimates through an

effective downweighting of the outliers.

In practice, however, there are limits to the downweighting

of outliers in the proposed algorithm. From (15) and the

example in Fig. 1, we can see that even for a few degrees of

freedom (e.g. six) significant downweighting is only achieved

for images with squared residuals that exceed the standard

deviation of the noise in the images several times. This may

restrict the usefulness of the proposed algorithm in identifying

aberrant particles. In practice, particles with such large resi-

duals may be easily recognizable at earlier stages of image

processing, whereas one would ideally want to downweight

any particle that does not correspond to a projection of one of

the K reference structures. Analyses of the two-dimensional

classifications presented in x3.2 indeed did not reveal an

obvious relation between low values of uold
ik’ and what one

would consider atypical images in terms of the underlying

signal (results not shown).

The number of degrees of freedom is a free parameter of

the proposed algorithm. Although in theory the optimal value

of any free parameter should be tested, we performed all

calculations presented in this work with a fixed value of six

degrees of freedom. Because 3D-EM images typically contain

many pixels, the right-hand side of both the numerator and the

denominator in (15) will dominate the calculation of uold
ik’ when

using few degrees of freedom. Together with the observation

made above that even for few degrees of freedom the effect of

outlier downweighting may be relatively small, this suggests

that in practice it may be sufficient to run this algorithm only

with few degrees of freedom. This is confirmed by our calcu-

lations. When using three, nine or 30 degrees of freedom in the

runs shown in Fig. 2, almost identical results were obtained

(not shown) compared with using six degrees of freedom.

Improved image classification would be the ultimate

aspiration of introducing a novel algorithm for maximum-

likelihood refinement of 3D-EM data. Despite the fact that

both the MCM and the G40P data set contained significant

amounts of neighbouring particles and other artefacts that

were not accounted for in the model, we did not observe any

significant improvement in using the t-mixture model over the

conventional Gaussian model in our two-dimensional classi-

fications. One could attribute this to the observation that

strong downweighting may only be achieved for outliers with

very large residuals and that such strong artefacts were not

present in these data. However, although the differences in the
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Figure 3
Segmented EF-G density from the maps obtained for the EF-G-
containing class in three-dimensional maximum-likelihood refinements
using a real-space (a, b) or reciprocal-space (c, d) target function and a
Gaussian (b, d) or a t-mixture model with six degrees of freedom (a, c).
Superimposed on the (transparent) densities obtained with the Gaussian
mixture model are the positive (green) and negative (red) difference
maps, i.e. the density obtained with the t-mixture minus the density
obtained with the Gaussian mixture. All maps, including the difference
maps, are rendered at the same isosurface value.



uold
ik’ weights may appear to be relatively small in practice,

more subtle effects may still play an important role in the

complicated convergence process. This may perhaps explain

why three-dimensional classification of a structurally hetero-

geneous ribosome data set with a real-space t-mixture model

may have given better classification results than the Gaussian

mixture, as hinted at by a stronger signal for the complexed

EF-G density.

We have presented too few tests to allow the drawing of

general conclusions on the relative suitability of the t-mixture

model and the conventional Gaussian model. A continuing

application of the proposed algorithms on multiple test cases

may provide further insights, but this falls beyond the scope of

this contribution. Most probably, the optimal choice of algo-

rithm will depend on the data set at hand. Therefore, we have

made all algorithms described in this work accessible to the

community by implementing them in our open-source package

XMIPP (Sorzano, Marabini et al., 2004; Scheres et al., 2008).

Apart from modifications to the maximum-likelihood classi-

fication approach as presented here, we also foresee the

exploration of alternative algorithms, such as maximum a

posteriori (MAP) estimation, which may offer signifant

benefits in additional stabilization of the reconstruction

problem through the incorporation of prior information.
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